Shortest Paths Revisited 2/4

Lecture 07.07 by Marina Barsky

Bellman-Ford



Negative edge costs

 Itis probably hard to imagine the cases in physical
world when the costs of edges are negative: think of a
network of roads

- However graphs model many different problems:
In decision problems modeled with graphs we can

easily get negative costs (penalties) and positive
costs (rewards)

« The problem then is to find the shortest (min-cost) path
that minimizes overall penalties — to make the best
possible sequence of decisions



Example of a graph with negative edge weights

h
0.7
0.008
0.009

Graph of costs for buying and selling currencies. These are conversion rates

1.5

74
1.5

Goal: find the way to convert from RUB to EURO with the biggest loss (dream
of a money-exchange agencies)

Note that we need to multiply here



Example of a graph with negative edge weights
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2.1

-0.17

-1.87

To reduce the problem to the shortest (min-cost) path problem:
Represent weights as -log of conversion rates

Now the product will become a sum, and we can compute the shortest (cheapest)
path, which will bring us max profit (or smallest loss) with exchanges
However some weights are negative!



Example of a graph with negative edge weights

0.15 ‘H 1.89

-0.17

-1.87

What is the min-cost path from RUB to EUR?
-0.17+2.1=1.93



Example of a graph with negative edge weights

)
0.15

2.1

-0.17

2.2

-0.17

What is the best path from RUB to EUR?
-0.17 +2.1 =1.93
1.89-0.17=1.72



Example of a graph with negative edge weights

-0.17

What is the best path from RUB to EUR?
-0.17+2.1=1.93

1.89-0.17=1.72
-0.17+2.2-0.17=2.2



Example of a graph with negative edge weights

)
0.15

-0.17

-1.87

What is the best path from RUB to EUR?
-0.17+2.1=1.93

+1.89-0.17=1.72
-0.17+22-017=2.2



Example of a graph with negative edge weights

0.15 ‘H 1.89

-1.87
-0.17
We will lose less  Th€ MiNn-cost path: Luckily we have only 4 nodes:
moneyifwe  -0.17+2.1=1.93 Dijkstra does not help here!
exchange this 11,89 - 0.17 = 1.72
o -0.17+2.2-0.17=2.2

1.890-21+21=1.89 Use Bellman-Ford



Single-Source shortest paths with
positive and negative edge costs

Bellman-Ford Algorithm

Dynamic Programming!



Negative edge costs: problem!

If we allow some weights be negative, we facing the problem of a negative

cycle: a cycle with the total cost < 0
All shortest-path algorithms based on iterative improvement will fail here,

because the cost of a path can be improved indefinitely!

The cost of path s~>v can be improved indefinitely!



Avoiding cycles: even bigger problem!

e We may think of limiting the search to paths that avoid traversing cycles, but
that leads to an even bigger problem:
o If we do not allow paths to use cycles, we are asking for something which
Is called a simple path: a path that repeats no vertex.
o If we need a path to every vertex — then we are asking for nothing else
but a Hamiltonian Path — and no efficient algorithm is known for
computing it!

A Hamiltonian cycle visits every
node of a graph exactly once

Unfortunately, no polynomial-time
algorithm is known for finding
Hamiltonian paths!



Negative-sum cycles

e If the graph contains a negative cycle, then all the shortest paths produced by
any of the shortest paths algorithms are unreliable (may be not the shortest)

e Thus we either believe that our input graph does not contain negative-weight
cycles, or we ask the algorithm to at least inform us if such cycle is present

e [or the same reason, while working with negative-edge weights we cannot
really work with undirected graphs: each negative-cost edge can be
considered as a negative-weight cycle of 2 nodes

We cannot work with undirected graphs with negative edge costs:
Move back and forth between v and u and the cost will decrease indefinitely



Quiz: how many edges in any shortest path?

Given directed graph
G=(V,E) without negative
cost cycles, what is the
maximum number of edges
in a shortest path u~>v?

Total number of edges:
At most n

At most n-1

At most n+1

At most n?

OO0 > e




Quiz: how many edges in any shortest path?

Given directed graph
G=(V,E) without negative
cost cycles, what is the
maximum number of edges
in a shortest path u~>v?

Total number of edges:
At most n

At most n-1

At most n+1

At most n2

OO0 > e

A shortest path from s to v will contain in total no more that n vertices and n-
1 edges, because these shortest paths would not contain cycles: the only
cycles that could improve the path cost are negative-weight cycles, and they
are not allowed



Generic Single-Source Shortest Paths problem

Input: directed graph G=(V,E), array C of edge costs [possibly
negative], source vertex s.

Output: if G has no negative-weight cycles, then for every vertex v
€ V, shortest path s~>v.



Recap: when to use Dynamic Programming

1 There is a “natural” ordering of subproblems from smallest to
largest such that you can obtain the solution for a subproblem by
only looking at smaller subproblems.

1 Itis easy to decide which subproblem is smaller when the input is a
sequence: array (knapsack items) or strings (edit distance)

1 It is much harder to imagine a “natural” ordering of subproblems on
graphs: they have no particular order on vertices or edges

1 If we do not have a “natural” ordering we need to impose an
artificial ordering: this is the main step in designing DP algorithms
on graphs



Order of subproblems

e We will exploit the sequential nature of a path: if a path is optimal, then every
sub-path must also be optimal

e Issue: not clear how to define smaller and larger subproblems
e Key idea: artificially restrict the number of edges in the path

e Subproblems are ordered by the number of edges allowed in the path

Example of subproblems:

2 The shortest path s~>v with
2 edge budget = 2 has cost 4

1 The shortest path s~>v with
edge budget = 3 has cost 3

First subproblem will be
considered smaller than the
second and will be solved first




Optimal subproblems

Let P(v,k-1) be the cost of shortest path from the source vertex s to v using at most k-1
edges
We increase the edge budget by allowing one more edge and want to compute P(v, k)
What are possible choices?
® F[or each incoming edge (u,v) we extend all (already computed) paths P(u, k-1) by edge
(u,v)
e [f adding any of these edges to paths P(u, k-1) does not result in a shorter path: then
P(v, k) = P(v, k-1) [we keep the previous shortest path]
e Otherwise we get a shorter path using one of the incoming (u,v) edges:
P(v,k) = P(u, k-1) + c,
For each vertex v we need to consider at most 1 + in-degree(v) candidate paths with the
edge budget <=k

P(v,2)=4

P(u,2)+1<4
PVv,3)=3

P(u,2) =2



Recurrence relation

e Let P(v,k) be the cost of the shortest path s~>v with the total budget k of
allowed edges [path s~>v contains < k edges]

Base case: k=0 [0 edges allowed]

0 if v=s
o ifv#s

P(v,0) = {



Recurrence relation

e Let P(v,k) be the cost of the shortest path s~>v with the total budget k of
allowed edges [path s~>v contains < k edges]

Base case: k=0 [0 edges allowed]

0 if v=s
o ifv#s

P(v,0) = {

+ Max number of edges n-1
Recurrence: 0 <k <n-1

P(v, k-1)
min (P(u, k-1) + c,, )

over all edges(u,v)

P(v,k) = min



Pseudocode

Algorithm BellmanFord (digraph G=(V, E), edge costs C, start node s)

A: = nxn 2D array indexed by k and v

# base case

AJ0,s]:=0

for eachv € V:
A[0, v] :=0

# DP table
for k from 1 to n-1:
foreachveV:
A[k,v]:= A[k-1][v]
for each edge (u, v): # check all incoming edges of v
if A[k-1][u] + C[u,v] <A[kV]:
Alk,v]: = A[k-1][u] + C[u,v]

return A[n-1]  # the last row contains final shortest paths from s



Bellman-Ford: illustration

e k=0 [zero edges allowed]




Bellman-Ford: illustration

e k=1 [shortest paths with 1 edge]




Bellman-Ford: illustration

k=2



Bellman-Ford: illustration




Bellman-Ford: illustration




Running Time

Algorithm BellmanFord(digraph G=(V, E), edge costs C)
A: =nxn 2D array indexed by k and v

# base case
AJ0,s]:=0
foreachveV:
A[0, v] := :
Loop is
executed _ _
# DP table n times At each iteration — total

_ O(m) edges are checked
for k from 1 to n-1: for all the subproblems at
for eachv e V: iteration k

A[k,v]:= A[k-1][Vv] Sum(in-degree(V)) = O(n

for each edge (u, v): # check all incoming edges of v.= —
if A[k-1][u] + C[u,v] <A[k,v]:
A[k,v]: = A[k-1][u] + C[u,v] _

return A[n-1] # the last row contains final shortest paths from s

Running time: O(nm)



Bellman-Ford algorithm: notes

e FEarly stopping:
o We can run less than n-1 iterations
o If there is no improvements between iteration k-1 and iteration k, then the
algorithm computed all shortest paths

® Detecting negative-weight cycles:
o If algorithm continues until iteration n-1, then we run one more iteration
o If we have improvements in iteration n, then G contains a negative-cost cycle
o Conclusion: all the shortest paths are unreliable

® Space improvement:

o We can reconstruct the shortest paths by a regular traceback: but this requires to
store all n? cells of the DP table

o However due to sequential nature of a path and the fact that each sub-path of the
optimal path is by itself optimal — we just need to store the predecessor node for
each destination vertex v: when the path gets improved, we store the source node
u which caused this improvement

o Because the sub-path s~>u is by itself optimal, we can continue recovering the
path by looking at predecessor of u etc., until we reach node s



