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Bellman-Ford



Negative edge costs

• It is probably hard to imagine the cases in physical 

world when the costs of edges are negative: think of a 

network of roads

• However graphs model many different problems:

in decision problems modeled with graphs we can 

easily get negative costs (penalties) and positive 

costs (rewards)

• The problem then is to find the shortest (min-cost) path 

that minimizes overall penalties – to make the best 

possible sequence of decisions



Example of a graph with negative edge weights
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Graph of costs for buying and selling currencies. These are conversion rates

Goal: find the way to convert from RUB to EURO with the biggest loss (dream 

of a money-exchange agencies)

Note that we need to multiply here



Example of a graph with negative edge weights
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To reduce the problem to the shortest (min-cost) path problem:

Represent weights as -log of conversion rates

Now the product will become a sum, and we can compute the shortest (cheapest) 

path, which will bring us max profit (or smallest loss) with exchanges

However some weights are negative!



Example of a graph with negative edge weights

What is the min-cost path from RUB to EUR?

-0.17 + 2.1 = 1.93
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Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 +2.1 = 1.93

1.89 - 0.17 = 1.72
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Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 + 2.1 = 1.93

1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2
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Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 + 2.1 = 1.93

+1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2

1.89 - 2.1 + 2.1 = 1.89
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Example of a graph with negative edge weights

The min-cost path:

-0.17 + 2.1 = 1.93

+1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2

1.89 - 2.1 + 2.1 = 1.89

Luckily we have only 4 nodes:

Dijkstra does not help here!

Use Bellman-Ford

We will lose less 

money if we 

exchange this 

way
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Single-Source shortest paths with 

positive and negative edge costs

Bellman-Ford Algorithm

Dynamic Programming!



Negative edge costs: problem!

● If we allow some weights be negative, we facing the problem of a negative 

cycle: a cycle with the total cost < 0

● All shortest-path algorithms based on iterative improvement will fail here, 

because the cost of a path can be improved indefinitely!
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The cost of path s~>v can be improved indefinitely!



Avoiding cycles: even bigger problem!

● We may think of limiting the search to paths that avoid traversing cycles, but 

that leads to an even bigger problem:

○ If we do not allow paths to use cycles, we are asking for something which 

is called a simple path: a path that repeats no vertex.

○ If we need a path to every vertex – then we are asking for nothing else 

but a Hamiltonian Path – and no efficient algorithm is known for 

computing it!

A Hamiltonian cycle visits every 

node of a graph exactly once 

Unfortunately, no polynomial-time 

algorithm is known for finding

Hamiltonian paths!



Negative-sum cycles

● If the graph contains a negative cycle, then all the shortest paths produced by 

any of the shortest paths algorithms are unreliable (may be not the shortest)

● Thus we either believe that our input graph does not contain negative-weight 

cycles, or we ask the algorithm to at least inform us if such cycle is present

● For the same reason, while working with negative-edge weights we cannot 

really work with undirected graphs: each negative-cost edge can be 

considered as a negative-weight cycle of 2 nodes
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We cannot work with undirected graphs with negative edge costs:

Move back and forth between v and u and the cost will decrease indefinitely



Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2
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Given directed graph 

G=(V,E) without negative 

cost cycles, what is the 

maximum number of edges 

in a shortest path u~>v?



Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2
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Given directed graph 

G=(V,E) without negative 

cost cycles, what is the 

maximum number of edges 

in a shortest path u~>v?

A shortest path from s to v will contain in total no more that n vertices and n-

1 edges, because these shortest paths would not contain cycles: the only 

cycles that could improve the path cost are negative-weight cycles, and they 

are not allowed



Generic Single-Source Shortest Paths problem

Input: directed graph G=(V,E), array C of edge costs [possibly 

negative], source vertex s.

Output: if G has no negative-weight cycles, then for every vertex v 

∈ V, shortest path s~>v.



Recap: when to use Dynamic Programming

❏ There is a “natural” ordering of subproblems from smallest to 

largest such that you can obtain the solution for a subproblem by 

only looking at smaller subproblems.

❏ It is easy to decide which subproblem is smaller when the input is a 

sequence: array (knapsack items) or strings (edit distance)

❏ It is much harder to imagine a “natural” ordering of subproblems on 

graphs: they have no particular order on vertices or edges 

❏ If we do not have a “natural” ordering we need to impose an 

artificial ordering: this is the main step in designing DP algorithms 

on graphs



Order of subproblems

● We will exploit the sequential nature of a path: if a path is optimal, then every 

sub-path must also be optimal

● Issue: not clear how to define smaller and larger subproblems

● Key idea: artificially restrict the number of edges in the path

● Subproblems are ordered by the number of edges allowed in the path
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Example of subproblems:

The shortest path s~>v with 

edge budget = 2 has cost 4

The shortest path s~>v with 

edge budget = 3 has cost 3

First subproblem will be 

considered smaller than the 

second and will be solved first



Optimal subproblems

Let P(v,k-1) be the cost of shortest path from the source vertex s to v using at most k-1 

edges

We increase the edge budget by allowing one more edge and want to compute P(v, k)

What are possible choices?

● For each incoming edge (u,v) we extend all (already computed) paths P(u, k-1) by edge 

(u,v)

● If adding any of these edges to paths P(u, k-1) does not result in a shorter path: then 

P(v, k) = P(v, k-1) [we keep the previous shortest path]

● Otherwise we get a shorter path using one of the incoming (u,v) edges: 

P(v,k) = P(u, k-1) + cuv

For each vertex v we need to consider at most 1 + in-degree(v) candidate paths with the 

edge budget <= k
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P(u,2) = 2

P(v,2) = 4

P(u,2)+1<4

P(v,3) = 3



Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of 

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0  if v=s

∞ if v ≠ s
P(v,0) = 



Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of 

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0  if v=s

∞ if v ≠ s

Recurrence: 0 < k ≤ n-1

P(v, k-1)

min (P(u, k-1) + cuv )

P(v,0) = 

P(v,k) = min 

over all edges(u,v)

Max number of edges n-1



Algorithm BellmanFord (digraph G=(V, E), edge costs C, start node s)

A: = nxn 2D array indexed by k and v

# base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

# DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v] 

return A[n-1] # the last row contains final shortest paths from s 

Pseudocode



Bellman-Ford: illustration

● k=0 [zero edges allowed]
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Bellman-Ford: illustration

● k=1 [shortest paths with 1 edge]
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Bellman-Ford: illustration

● k=2
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Bellman-Ford: illustration

● k=3
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Bellman-Ford: illustration

● k=4
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A: = nxn 2D array indexed by k and v

# base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

# DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v] 

return A[n-1] # the last row contains final shortest paths from s 

Algorithm BellmanFord(digraph G=(V, E), edge costs C)

Running Time

Loop is 

executed 

n times At each iteration – total 

O(m) edges are checked 

for all the subproblems at 

iteration k

Sum(in-degree(V)) = O(m)

Running time: O(nm)

The amortized 

cost of this inner 

loop is O(m)



Bellman-Ford algorithm: notes

● Early stopping:

○ We can run less than n-1 iterations

○ If there is no improvements between iteration k-1 and iteration k, then the 

algorithm computed all shortest paths

● Detecting negative-weight cycles:

○ If algorithm continues until iteration n-1, then we run one more iteration

○ If we have improvements in iteration n, then G contains a negative-cost cycle

○ Conclusion: all the shortest paths are unreliable

● Space improvement: 

○ We can reconstruct the shortest paths by a regular traceback: but this requires to 

store all n2 cells of the DP table

○ However due to sequential nature of a path and the fact that each sub-path of the 

optimal path is by itself optimal – we just need to store the predecessor node for 

each destination vertex v: when the path gets improved, we store the source node 

u which caused this improvement

○ Because the sub-path s~>u is by itself optimal, we can continue recovering the 

path by looking at predecessor of u etc., until we reach node s


