
1

Shortest Paths Revisited 2/4
Lecture 07.07 by Marina Barsky

Bellman-Ford

Negative edge costs

• It is probably hard to imagine the cases in physical

world when the costs of edges are negative: think of a

network of roads

• However graphs model many different problems:

in decision problems modeled with graphs we can

easily get negative costs (penalties) and positive

costs (rewards)

• The problem then is to find the shortest (min-cost) path

that minimizes overall penalties – to make the best

possible sequence of decisions

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

131

1.5

109

1.5

74

0.008

0.7

0.009

0.013

0.7

Graph of costs for buying and selling currencies. These are conversion rates

Goal: find the way to convert from RUB to EURO with the biggest loss (dream

of a money-exchange agencies)

Note that we need to multiply here

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

To reduce the problem to the shortest (min-cost) path problem:

Represent weights as -log of conversion rates

Now the product will become a sum, and we can compute the shortest (cheapest)

path, which will bring us max profit (or smallest loss) with exchanges

However some weights are negative!

Example of a graph with negative edge weights

What is the min-cost path from RUB to EUR?

-0.17 + 2.1 = 1.93

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 +2.1 = 1.93

1.89 - 0.17 = 1.72

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 + 2.1 = 1.93

1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

Example of a graph with negative edge weights

What is the best path from RUB to EUR?

-0.17 + 2.1 = 1.93

+1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2

1.89 - 2.1 + 2.1 = 1.89

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

Example of a graph with negative edge weights

The min-cost path:

-0.17 + 2.1 = 1.93

+1.89 - 0.17 = 1.72

-0.17 + 2.2 - 0.17 = 2.2

1.89 - 2.1 + 2.1 = 1.89

Luckily we have only 4 nodes:

Dijkstra does not help here!

Use Bellman-Ford

We will lose less

money if we

exchange this

way

1USD

1Yen

1Euro

1RUB

-2

-0.17

-2.1

-0.17

-1.87

2.1

0.15

2.2

1.89

0.15

Single-Source shortest paths with

positive and negative edge costs

Bellman-Ford Algorithm

Dynamic Programming!

Negative edge costs: problem!

● If we allow some weights be negative, we facing the problem of a negative

cycle: a cycle with the total cost < 0

● All shortest-path algorithms based on iterative improvement will fail here,

because the cost of a path can be improved indefinitely!

v

s

2

-1

-4

-2

1

The cost of path s~>v can be improved indefinitely!

Avoiding cycles: even bigger problem!

● We may think of limiting the search to paths that avoid traversing cycles, but

that leads to an even bigger problem:

○ If we do not allow paths to use cycles, we are asking for something which

is called a simple path: a path that repeats no vertex.

○ If we need a path to every vertex – then we are asking for nothing else

but a Hamiltonian Path – and no efficient algorithm is known for

computing it!

A Hamiltonian cycle visits every

node of a graph exactly once

Unfortunately, no polynomial-time

algorithm is known for finding

Hamiltonian paths!

Negative-sum cycles

● If the graph contains a negative cycle, then all the shortest paths produced by

any of the shortest paths algorithms are unreliable (may be not the shortest)

● Thus we either believe that our input graph does not contain negative-weight

cycles, or we ask the algorithm to at least inform us if such cycle is present

● For the same reason, while working with negative-edge weights we cannot

really work with undirected graphs: each negative-cost edge can be

considered as a negative-weight cycle of 2 nodes

uv

s

2

1

4

-2

1

We cannot work with undirected graphs with negative edge costs:

Move back and forth between v and u and the cost will decrease indefinitely

Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2

25

s 5

-15

5

10

5

10

20

15

-25

20

10

Given directed graph

G=(V,E) without negative

cost cycles, what is the

maximum number of edges

in a shortest path u~>v?

Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2

25

s 5

-15

5

10

5

10

20

15

-25

20

10

Given directed graph

G=(V,E) without negative

cost cycles, what is the

maximum number of edges

in a shortest path u~>v?

A shortest path from s to v will contain in total no more that n vertices and n-

1 edges, because these shortest paths would not contain cycles: the only

cycles that could improve the path cost are negative-weight cycles, and they

are not allowed

Generic Single-Source Shortest Paths problem

Input: directed graph G=(V,E), array C of edge costs [possibly

negative], source vertex s.

Output: if G has no negative-weight cycles, then for every vertex v

∈ V, shortest path s~>v.

Recap: when to use Dynamic Programming

❏ There is a “natural” ordering of subproblems from smallest to

largest such that you can obtain the solution for a subproblem by

only looking at smaller subproblems.

❏ It is easy to decide which subproblem is smaller when the input is a

sequence: array (knapsack items) or strings (edit distance)

❏ It is much harder to imagine a “natural” ordering of subproblems on

graphs: they have no particular order on vertices or edges

❏ If we do not have a “natural” ordering we need to impose an

artificial ordering: this is the main step in designing DP algorithms

on graphs

Order of subproblems

● We will exploit the sequential nature of a path: if a path is optimal, then every

sub-path must also be optimal

● Issue: not clear how to define smaller and larger subproblems

● Key idea: artificially restrict the number of edges in the path

● Subproblems are ordered by the number of edges allowed in the path

v

s

2

1

1

2

1

Example of subproblems:

The shortest path s~>v with

edge budget = 2 has cost 4

The shortest path s~>v with

edge budget = 3 has cost 3

First subproblem will be

considered smaller than the

second and will be solved first

Optimal subproblems

Let P(v,k-1) be the cost of shortest path from the source vertex s to v using at most k-1

edges

We increase the edge budget by allowing one more edge and want to compute P(v, k)

What are possible choices?

● For each incoming edge (u,v) we extend all (already computed) paths P(u, k-1) by edge

(u,v)

● If adding any of these edges to paths P(u, k-1) does not result in a shorter path: then

P(v, k) = P(v, k-1) [we keep the previous shortest path]

● Otherwise we get a shorter path using one of the incoming (u,v) edges:

P(v,k) = P(u, k-1) + cuv

For each vertex v we need to consider at most 1 + in-degree(v) candidate paths with the

edge budget <= k

v

s
u

2

1 1

2

1

P(u,2) = 2

P(v,2) = 4

P(u,2)+1<4

P(v,3) = 3

Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0 if v=s

∞ if v ≠ s
P(v,0) =

Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0 if v=s

∞ if v ≠ s

Recurrence: 0 < k ≤ n-1

P(v, k-1)

min (P(u, k-1) + cuv)

P(v,0) =

P(v,k) = min

over all edges(u,v)

Max number of edges n-1

Algorithm BellmanFord (digraph G=(V, E), edge costs C, start node s)

A: = nxn 2D array indexed by k and v

base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v]

return A[n-1] # the last row contains final shortest paths from s

Pseudocode

Bellman-Ford: illustration

● k=0 [zero edges allowed]

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1

2

3

4

0
∞ ∞

∞ ∞

Bellman-Ford: illustration

● k=1 [shortest paths with 1 edge]

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2

3

4

0
∞ ∞

∞ ∞

0
∞

∞

4

2

Bellman-Ford: illustration

● k=2

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3

4

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

Bellman-Ford: illustration

● k=3

X
T

V

S

W

2

4

2

4

1 2

i S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3 0 6 2 4 3

4

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

0 3
6

42

Bellman-Ford: illustration

● k=4

X
T

V

S

W

2

4

2

4

1 2

i S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3 0 6 2 4 3

4 0 6 2 4 3

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

0 3
6

42

A: = nxn 2D array indexed by k and v

base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v]

return A[n-1] # the last row contains final shortest paths from s

Algorithm BellmanFord(digraph G=(V, E), edge costs C)

Running Time

Loop is

executed

n times At each iteration – total

O(m) edges are checked

for all the subproblems at

iteration k

Sum(in-degree(V)) = O(m)

Running time: O(nm)

The amortized

cost of this inner

loop is O(m)

Bellman-Ford algorithm: notes

● Early stopping:

○ We can run less than n-1 iterations

○ If there is no improvements between iteration k-1 and iteration k, then the

algorithm computed all shortest paths

● Detecting negative-weight cycles:

○ If algorithm continues until iteration n-1, then we run one more iteration

○ If we have improvements in iteration n, then G contains a negative-cost cycle

○ Conclusion: all the shortest paths are unreliable

● Space improvement:

○ We can reconstruct the shortest paths by a regular traceback: but this requires to

store all n2 cells of the DP table

○ However due to sequential nature of a path and the fact that each sub-path of the

optimal path is by itself optimal – we just need to store the predecessor node for

each destination vertex v: when the path gets improved, we store the source node

u which caused this improvement

○ Because the sub-path s~>u is by itself optimal, we can continue recovering the

path by looking at predecessor of u etc., until we reach node s

