Shortest Paths Revisited 2/4

Lecture 07.07 by Marina Barsky

Bellman-Ford

Negative edge costs

- It is probably hard to imagine the cases in physical world when the costs of edges are negative: think of a network of roads
- However graphs model many different problems: in decision problems modeled with graphs we can easily get negative costs (penalties) and positive costs (rewards)
- The problem then is to find the shortest (min-cost) path that minimizes overall penalties - to make the best possible sequence of decisions

Example of a graph with negative edge weights

Graph of costs for buying and selling currencies. These are conversion rates Goal: find the way to convert from RUB to EURO with the biggest loss (dream of a money-exchange agencies)

Note that we need to multiply here

Example of a graph with negative edge weights

To reduce the problem to the shortest (min-cost) path problem:
Represent weights as -log of conversion rates
Now the product will become a sum, and we can compute the shortest (cheapest) path, which will bring us max profit (or smallest loss) with exchanges However some weights are negative!

Example of a graph with negative edge weights

What is the min-cost path from RUB to EUR?
$-0.17+2.1=1.93$

Example of a graph with negative edge weights

What is the best path from RUB to EUR?
$-0.17+2.1=1.93$
$1.89-0.17=1.72$

Example of a graph with negative edge weights

What is the best path from RUB to EUR?
$-0.17+2.1=1.93$
$1.89-0.17=1.72$
$-0.17+2.2-0.17=2.2$

Example of a graph with negative edge weights

What is the best path from RUB to EUR?
$-0.17+2.1=1.93$
$+1.89-0.17=1.72$
$-0.17+2.2-0.17=2.2$
$1.89-2.1+2.1=1.89$

Example of a graph with negative edge weights

We will lose less money if we

The min-cost path:

$$
-0.17+2.1=1.93
$$

exchange this way
+1.89-0.17=1.72

$$
-0.17+2.2-0.17=2.2
$$

$$
1.89-2.1+2.1=1.89
$$

Luckily we have only 4 nodes: Dijkstra does not help here!

Single-Source shortest paths with positive and negative edge costs

Bellman-Ford Algorithm

Dynamic Programming!

Negative edge costs: problem!

- If we allow some weights be negative, we facing the problem of a negative cycle: a cycle with the total cost <0
- All shortest-path algorithms based on iterative improvement will fail here, because the cost of a path can be improved indefinitely!

The cost of path $s^{\sim}>v$ can be improved indefinitely!

Avoiding cycles: even bigger problem!

- We may think of limiting the search to paths that avoid traversing cycles, but that leads to an even bigger problem:
- If we do not allow paths to use cycles, we are asking for something which is called a simple path: a path that repeats no vertex.
- If we need a path to every vertex - then we are asking for nothing else but a Hamiltonian Path - and no efficient algorithm is known for computing it!

A Hamiltonian cycle visits every node of a graph exactly once

Unfortunately, no polynomial-time algorithm is known for finding Hamiltonian paths!

Negative-sum cycles

- If the graph contains a negative cycle, then all the shortest paths produced by any of the shortest paths algorithms are unreliable (may be not the shortest)
- Thus we either believe that our input graph does not contain negative-weight cycles, or we ask the algorithm to at least inform us if such cycle is present
- For the same reason, while working with negative-edge weights we cannot really work with undirected graphs: each negative-cost edge can be considered as a negative-weight cycle of 2 nodes

We cannot work with undirected graphs with negative edge costs: Move back and forth between v and u and the cost will decrease indefinitely

Quiz: how many edges in any shortest path?

Given directed graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ without negative cost cycles, what is the maximum number of edges in a shortest path $u \sim>v$?

- Total number of edges:
A. At most n
B. At most $\mathrm{n}-1$
C. At most $n+1$
D. At most n^{2}

Quiz: how many edges in any shortest path?

Given directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ without negative cost cycles, what is the maximum number of edges in a shortest path $u \sim>v$?

- Total number of edges:
A. At most n
B. At most n-1
C. At most $n+1$
D. At most n^{2}

A shortest path from s to v will contain in total no more that n vertices and n 1 edges, because these shortest paths would not contain cycles: the only cycles that could improve the path cost are negative-weight cycles, and they are not allowed

Generic Single-Source Shortest Paths problem

Input: directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, array C of edge costs [possibly negative], source vertex s.
Output: if G has no negative-weight cycles, then for every vertex v $\in \mathrm{V}$, shortest path $\mathrm{s} \sim>\mathrm{V}$.

Recap: when to use Dynamic Programming

\square There is a "natural" ordering of subproblems from smallest to largest such that you can obtain the solution for a subproblem by only looking at smaller subproblems.
\square It is easy to decide which subproblem is smaller when the input is a sequence: array (knapsack items) or strings (edit distance)
\square It is much harder to imagine a "natural" ordering of subproblems on graphs: they have no particular order on vertices or edges
\square If we do not have a "natural" ordering we need to impose an artificial ordering: this is the main step in designing DP algorithms on graphs

Order of subproblems

- We will exploit the sequential nature of a path: if a path is optimal, then every sub-path must also be optimal
- Issue: not clear how to define smaller and larger subproblems
- Key idea: artificially restrict the number of edges in the path
- Subproblems are ordered by the number of edges allowed in the path

Example of subproblems:

The shortest path s~>v with edge budget $=2$ has cost 4

The shortest path $s \sim>v$ with edge budget $=3$ has cost 3

First subproblem will be considered smaller than the second and will be solved first

Optimal subproblems

Let $\mathrm{P}(\mathrm{v}, \mathrm{k}-1)$ be the cost of shortest path from the source vertex s to v using at most k -1 edges
We increase the edge budget by allowing one more edge and want to compute $P(v, k)$ What are possible choices?

- For each incoming edge (u, v) we extend all (already computed) paths $P(u, k-1)$ by edge (u,v)
- If adding any of these edges to paths $\mathrm{P}(\mathrm{u}, \mathrm{k}-1)$ does not result in a shorter path: then

$$
P(v, k)=P(v, k-1)[\text { we keep the previous shortest path] }
$$

- Otherwise we get a shorter path using one of the incoming (u, v) edges:

$$
P(v, k)=P(u, k-1)+c_{u v}
$$

For each vertex v we need to consider at most $1+$ in-degree(v) candidate paths with the edge budget <= k

Recurrence relation

- Let $\mathrm{P}(\mathrm{v}, \mathrm{k})$ be the cost of the shortest path $\mathrm{s} \sim>\mathrm{v}$ with the total budget k of allowed edges [path $\mathrm{s} \sim>\mathrm{v}$ contains $\leq k$ edges]

Base case: $\mathrm{k}=0$ [0 edges allowed]

$$
P(v, 0)= \begin{cases}0 & \text { if } v=s \\ \infty & \text { if } v \neq s\end{cases}
$$

Recurrence relation

- Let $\mathrm{P}(\mathrm{v}, \mathrm{k})$ be the cost of the shortest path $\mathrm{s} \sim>\mathrm{v}$ with the total budget k of allowed edges [path $\mathrm{s} \sim>\mathrm{v}$ contains $\leq \mathrm{k}$ edges]

Base case: $\mathrm{k}=0$ [0 edges allowed]

$$
P(v, 0)=\left\{\begin{array}{l}
0 \text { if } v=s \\
\infty \text { if } v \neq s
\end{array}\right.
$$

Recurrence: $0<k \leq n-1<$ Max number of edges $n-1$

$$
P(v, k)=\min \left\{\begin{array}{l}
P(v, k-1) \\
\min _{\text {overal edges(uv) }}\left(P(u, k-1)+c_{u v}\right)
\end{array}\right.
$$

Pseudocode

Algorithm BellmanFord (digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, edge costs C , start node s)

```
A: = nxn 2D array indexed by k and v
# base case
A[0, s]:= 0
for each v}\inV\mathrm{ :
\[
\mathrm{A}[0, \mathrm{v}]:=\infty
\]
```

```
# DP table
```


DP table

for k from 1 to n-1:
for each v }\inV\mathrm{ :
A[k,v]:= A[k-1][v]
for each edge (u,v): \# check all incoming edges of v
if A[k-1][u] + C[u,v] < A[k,v]:
A[k,v]:= A[k-1][u] + C[u,v]

```
return \(A[n-1]\) \# the last row contains final shortest paths from \(s\)

\section*{Bellman-Ford: illustration}
- \(\mathrm{k}=0\) [zero edges allowed]
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(k\) & S & T & V & W & X \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\hline 1 & & & & & \\
\hline 2 & & & & & \\
\hline 3 & & & & & \\
\hline 4 & & & & & \\
\hline
\end{tabular}

\section*{Bellman-Ford: illustration}
- \(\mathrm{k}=1\) [shortest paths with 1 edge]

\begin{tabular}{|l|l|l|l|l|l|}
\hline k & S & T & V & W & X \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\hline 1 & 0 & \(\infty\) & 2 & \(\infty\) & 4 \\
\hline 2 & & & & & \\
\hline 3 & & & & & \\
\hline 4 & & & & & \\
\hline
\end{tabular}

\section*{Bellman-Ford: illustration}
- \(\mathrm{k}=2\)

\begin{tabular}{|l|l|l|l|l|l|}
\hline k & S & T & V & W & X \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\hline 1 & 0 & \(\infty\) & 2 & \(\infty\) & 4 \\
\hline 2 & 0 & 8 & 2 & 4 & 3 \\
\hline 3 & & & & & \\
\hline 4 & & & & & \\
\hline
\end{tabular}

\section*{Bellman-Ford: illustration}
\[
\text { - } k=3
\]

\begin{tabular}{|l|l|l|l|l|l|}
\hline i & S & T & V & W & X \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\hline 1 & 0 & \(\infty\) & 2 & \(\infty\) & 4 \\
\hline 2 & 0 & 8 & 2 & 4 & 3 \\
\hline 3 & 0 & 6 & 2 & 4 & 3 \\
\hline 4 & & & & & \\
\hline
\end{tabular}

\section*{Bellman-Ford: illustration}
- \(\mathrm{k}=4\)

\begin{tabular}{|l|l|l|l|l|l|}
\hline i & S & T & V & W & X \\
\hline 0 & 0 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
\hline 1 & 0 & \(\infty\) & 2 & \(\infty\) & 4 \\
\hline 2 & 0 & 8 & 2 & 4 & 3 \\
\hline 3 & 0 & 6 & 2 & 4 & 3 \\
\hline 4 & 0 & 6 & 2 & 4 & 3 \\
\hline
\end{tabular}

\section*{Running Time}

\section*{Algorithm BellmanFord(digraph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\), edge costs C\()\)}
```

A: = nxn 2D array indexed by k and v

base case

A[0, s]:= 0
for each }v\inV\mathrm{ :

```
Loop is executed
```

 for each }v\inV\mathrm{ :
 \# DP table
\# DP table
for k from 1 to $\mathrm{n}-1$:
for k from 1 to $\mathrm{n}-1$:

$$
\begin{aligned}
& A[k, v]:=A[k-1][v] \\
& \text { for each edge }(u, v): \# \text { check all incoming edges of } v \\
& \text { if } A[k-1][u]+C[u, v]<A[k, v]: \\
& \quad A[k, v]:=A[k-1][u]+C[u, v]
\end{aligned}
$$

 \(\mathrm{A}[\mathrm{k}, \mathrm{v}]:=\mathrm{A}[\mathrm{k}-1][\mathrm{v}]\)
 \(\mathrm{A}[\mathrm{k}, \mathrm{v}]:=\mathrm{A}[\mathrm{k}-1][\mathrm{v}]\)
 for each edge (\(u, v\)): \# check all incoming edges of \(v\)
 for each edge (\(u, v\)): \# check all incoming edges of \(v\)
 if \(A[k-1][u]+C[u, v]<A[k, v]:\)
 if \(A[k-1][u]+C[u, v]<A[k, v]:\)
 \(\mathrm{A}[\mathrm{k}, \mathrm{v}]:=\mathrm{A}[\mathrm{k}-1][\mathrm{u}]+\mathrm{C}[\mathrm{u}, \mathrm{v}]\)
 \(\mathrm{A}[\mathrm{k}, \mathrm{v}]:=\mathrm{A}[\mathrm{k}-1][\mathrm{u}]+\mathrm{C}[\mathrm{u}, \mathrm{v}]\)
 return A[n-1] \# the last row contains final shortest paths from s

```

Running time: \(\mathrm{O}(\mathrm{nm})\)

\section*{Bellman-Ford algorithm: notes}
- Early stopping:
- We can run less than n-1 iterations
- If there is no improvements between iteration \(\mathrm{k}-1\) and iteration k , then the algorithm computed all shortest paths
- Detecting negative-weight cycles:
- If algorithm continues until iteration \(n-1\), then we run one more iteration
- If we have improvements in iteration \(n\), then \(G\) contains a negative-cost cycle
- Conclusion: all the shortest paths are unreliable
- Space improvement:
- We can reconstruct the shortest paths by a regular traceback: but this requires to store all \(\mathrm{n}^{2}\) cells of the DP table
- However due to sequential nature of a path and the fact that each sub-path of the optimal path is by itself optimal - we just need to store the predecessor node for each destination vertex v: when the path gets improved, we store the source node u which caused this improvement
- Because the sub-path s~>u is by itself optimal, we can continue recovering the path by looking at predecessor of \(u\) etc., until we reach node \(s\)```

